Photoacoustic study of elastic deformations in silicon membranes

Author:

Todorovic D. M.1ORCID

Affiliation:

1. University of Belgrade Institute for Multidisciplinary Studies, , P.O. Box 33, 11030 Belgrade, Serbia

Abstract

In an optically excited semiconductor micromechanical structure, photogenerated carriers (plasma waves) can produce elastic deformations (local strains and stresses)–plasmaelastic (PE) deformations. On the other hand, the generation of excess carriers will produce heat due to carrier thermalization and recombination processes. The generated heat can produce other elastic deformations–thermoelastic (TE) deformations. For these two components of elastic deformation, it is possible to consider two types of elastic displacements (two mods of elastic vibrations): elastic expanding and elastic bending. A theoretical model of the photoacoustic (PA) signal for optically excited Si membranes is given, which includes thermal diffusion (TD), TE, and PE mechanisms, in order to study elastic expansion and bending. The relations for the PA amplitude and the phase of elastic expanding and bending in the excited membrane are derived. Analysis of the PA signal indicates that the TD component is dominant for all thicknesses and practically the entire range of observed frequencies. The calculated PA amplitude and phase spectra show that the PA elastic expanding component has a significant influence on the total PA signal at low frequencies. On the other side, the calculated PA spectra show that the PA elastic bending component has a significant influence on the total PA signal at high frequencies. Experimental PA signals of Si membranes were measured using the sample-gas-microphone detection technique with a transmission configuration in relation to the modulation frequency of the optical excitation for different membrane thicknesses. The experimental PA spectra were compared with the theoretical ones.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Reference41 articles.

1. Carrier transport contribution to thermoelastic and electronic deformation in semiconductors,2000

2. Photothermal elastic bending method in investigation of microelectromechanic structures;Rev. Sci. Instrum.,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3