Effects of chain resolution on the configurational and rheological predictions of dilute polymer solutions in flow fields with hydrodynamic interactions

Author:

Kumar Praphul1ORCID,Krishna S. V. Siva1ORCID,Sharma Bharatkumar2ORCID,Saha Dalal Indranil1ORCID

Affiliation:

1. Department of Chemical Engineering, Indian Institute of Technology Kanpur 1 , Kanpur 208016, India

2. NVIDIA Graphics Pvt. Ltd. 2 , Bangalore 560045, India

Abstract

In a recent study, the resolution of a polymer chain model was shown to significantly affect rheological predictions from Brownian dynamics (BD) simulations [Kumar and Dalal, “Effects of chain resolution on the configurational and rheological predictions from Brownian dynamics simulations of an isolated polymer chain in flow,” J. Non-Newtonian Fluid Mech. 315, 105017 (2023)], even in the absence of hydrodynamic interactions (HI) and excluded volume. In this study, we investigate the effects of chain resolution in the presence of HI. Toward this, we perform BD simulations of a long polymer chain, with the discretization level varying from a single Kuhn step (bead–rod model) to several tens of Kuhn-steps (bead–spring model). The chain models were subjected to flow fields of uniaxial extension (purely stretching) and steady shear (equal rates of stretching and rotation). Broadly, our results indicate an amplification of the differences observed between the differently resolved bead–rod and bead–spring models, in the presence of HI. Interestingly, all rheological predictions qualitatively fall in two groups for extensional flow, with the predictions from the bead–spring model with HI being close to those of the bead–rod model without HI. This indicates significantly reduced sensitivity of coarser bead–spring models to HI, relative to the one resolved to a single Kuhn step. However, in shear flow, the bead–spring rheological predictions fall between those of the bead–rod model with and without HI, forming a third group. This is linked to the presence of stretched and coiled states in the ensemble for shear flow. HI effects are large for the coiled states and weak for the stretched states, thereby yielding predictions that are intermediate between those for no HI and dominant HI. Thus, quite surprisingly, the quality of predictions of the bead–spring models is strongly affected by the physics of the flow field, irrespective of the parameterization.

Funder

Science and Engineering Research Board

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3