Marangoni destabilization of bidimensional-confined gas–liquid co-flowing streams in rectangular microfluidic channels

Author:

Clerget Mattéo12ORCID,Klimenko Alexandra2ORCID,Bourrel Maurice2ORCID,Lequeux François3ORCID,Panizza Pascal34ORCID

Affiliation:

1. Laboratoire Physico-Chimie des Interfaces Complexes 1 , Bâtiment Chemstartup, RD 817, 64170 Lacq, France

2. TotalEnergies S.E., Pôle d'Etude et de Recherches de Lacq 2 , BP 47, 64170 Lacq, France

3. Laboratoire Sciences et Ingénierie de la Matière Molle, ESPCI Paris, PSL University, Sorbonne Université 3 , CNRS UMR 7615, 75005 Paris, France

4. IPR 4 , UMR CNRS 6251, Campus Beaulieu, Université Rennes 1, 35042 Rennes, France

Abstract

In microchannels, the stability of a fluid jet injected into another immiscible fluid strongly depends on its degree of geometric confinement. When the width of the jet, w, is larger than the channel height, H, the surface tension driven Rayleigh–Plateau instability is suppressed so that the 2D (bidimensional)-confined jet is absolutely stable and never collapses into bubbles (or drops) in contrast to what occurs when w ≤ H [Dollet et al., “Role of the channel geometry on the bubble pinch-off in flow-focusing,” Phys. Rev. Lett. 100(3), 034504 (2008); Guillot et al., “Stability of a jet in confined pressure-driven biphasic flows at low Reynolds number in various geometries,” Phys. Rev. E 78(1), 016307 (2008)]. We here demonstrate both experimentally and theoretically that this picture is, indeed, no longer valid when Marangoni effects are considered. We experimentally show that the addition of small length alcohol molecules into the liquid phase destabilizes a 2D-confined gas–water microfluidic stream ( w > H), leading to the generation of steady non-linear waves and further to the production of bubbles. Using a simple hydrodynamic model, we show through a linear analysis that the destabilization of the gas stream may result from a Marangoni instability due to the fast adsorption of the alcohol molecules, which occurs on a timescale comparable to that of the microfluidic flow.

Funder

Total

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3