A molecular density functional theory for associating fluids in 3D geometries

Author:

Barthes Antoine1ORCID,Bernet Thomas2ORCID,Grégoire David13ORCID,Miqueu Christelle1ORCID

Affiliation:

1. Universite de Pau et des Pays de l’Adour, E2S UPPA, CNRS, LFCR 1 , Anglet, France

2. Department of Chemical Engineering, Sargent Centre for Process Systems Engineering, Institute for Molecular Science and Engineering, Imperial College London, South Kensington Campus 2 , London SW7 2AZ, United Kingdom

3. Institut Universitaire de France 3 , Paris, France

Abstract

A new free-energy functional is proposed for inhomogeneous associating fluids. The general formulation of Wertheim’s thermodynamic perturbation theory is considered as the starting point of the derivation. We apply the hypotheses of the statistical associating fluid theory in the classical density functional theory (DFT) framework to obtain a tractable expression of the free-energy functional for inhomogeneous associating fluids. Specific weighted functions are introduced in our framework to describe association interactions for a fluid under confinement. These weighted functions have a mathematical structure similar to the weighted densities of the fundamental-measure theory (i.e., they can be expressed as convolution products) such that they can be efficiently evaluated with Fourier transforms in a 3D space. The resulting free-energy functional can be employed to determine the microscopic structure of inhomogeneous associating fluids of arbitrary 3D geometry. The new model is first compared with Monte Carlo simulations and previous versions of DFT for a planar hard wall system in order to check its consistency in a 1D case. As an example of application in a 3D configuration, we then investigate the extreme confinement of an associating hard-sphere fluid inside an anisotropic open cavity with a shape that mimics a simplified model of zeolite. Both the density distribution and the corresponding molecular bonding profile are given, revealing complementary information to understand the structure of the associating fluid inside the cavity network. The impact of the degree of association on the preferential positions of the molecules inside the cavity is investigated as well as the competition between association and steric effect on adsorption.

Funder

Agence Nationale de la Recherche

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3