Role of asymmetry and external noise in the development and synchronization of oscillations in the analog Hopfield neural networks with time delay

Author:

Rozier Kelvin1ORCID,Chechkin Aleksei234ORCID,Bondarenko Vladimir E.15ORCID

Affiliation:

1. Department of Mathematics and Statistics, Georgia State University 1 , Atlanta, Georgia 30303, USA

2. Faculty of Pure and Applied Mathematica, Hugo Steinhaus Center, Wrocław University of Science and Technology 2 , Wyspianskiego 27, 50-370 Wrocław, Poland

3. Institute of Physics and Astronomy, University of Potsdam 3 , 14476 Potsdam-Golm, Germany

4. Akhiezer Institute for Theoretical Physics 4 , 61108 Kharkov, Ukraine

5. Neuroscience Institute, Georgia State University 5 , Atlanta, Georgia 30303, USA

Abstract

The analog Hopfield neural network with time delay and random connections has been studied for its similarities in activity to human electroencephalogram and its usefulness in other areas of the applied sciences such as speech recognition, image analysis, and electrocardiogram modeling. Our goal here is to understand the mechanisms that affect the rhythmic activity in the neural network and how the addition of a Gaussian noise contributes to the network behavior. The neural network studied is composed of ten identical neurons. We investigated the excitatory and inhibitory networks with symmetric (square matrix) and asymmetric (triangular matrix) connections. The differential equations that model the network are solved numerically using the stochastic second-order Runge–Kutta method. Without noise, the neural networks with symmetric and asymmetric matrices possessed different synchronization properties: fully connected networks were synchronized both in time and in amplitude, while asymmetric networks were synchronized in time only. Saturation outputs of the excitatory neural networks do not depend on the time delay, whereas saturation oscillation amplitudes of inhibitory networks increase with the time delay until the steady state. The addition of the Gaussian noise is shown to significantly amplify small-amplitude oscillations, dramatically accelerates the rate of amplitude growth to saturation, and changes synchronization properties of the neural network outputs.

Funder

American Heart Association

Polish National Agency for Academic Exchange

Brain and Behavior Program

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3