Nanoclustering in non-ideal ethanol/heptane solutions alters solvation dynamics

Author:

Crum Vivian F.1ORCID,Kubarych Kevin J.1ORCID

Affiliation:

1. Department of Chemistry, University of Michigan , 930 N. University Ave., Ann Arbor, Michigan 48109, USA

Abstract

Alcohol/alkane solutions widely used in chemical synthesis and as transportation fuels are highly non-ideal due to the nanoscale clustering of the amphiphilic alcohol molecules within the nonpolar alkanes. Besides impacting reactivity, such as combustion, non-ideal solutions are likely to exhibit unusual solvation dynamics on ultrafast time scales arising from the structurally heterogeneous nature of molecular-scale association. Using a convenient transition metal carbonyl vibrational probe [(C5H5)Mn(CO)3, CMT], linear absorption and nonlinear two-dimensional infrared (2D-IR) spectroscopy reveal composition-dependent solvation dynamics as reported by the frequency fluctuation correlation function in a series of ethanol/heptane solutions. Slow spectral diffusion with dilute ethanol indicates preferential solvation of the polar solute by the alcohol with a mechanism largely dominated by solvent exchange. Comparison with an ethanol/acetonitrile solution series yields no substantial preferential solvation or solvent exchange signatures in the linear or 2D-IR spectra. In ethanol/heptane solutions, increasing the ethanol concentration speeds up the solvation dynamics, which is largely consistent with a model that includes solvent exchange and single-solvent spectral diffusion. Detailed analysis of the deviation from the experimental time constants from the model’s optimal parameters yields a remarkable resemblance of the concentration-weighted Kirkwood-Buff integrals for ethanol/heptane solutions. This trend indicates that solution non-ideality alters the spectral diffusion dynamics of the probe solute. Given that nanoscale clustering drives the non-ideality, these experiments reveal a dynamical consequence of nanoscale heterogeneity on the ultrafast dynamics of the solution. Refined understanding of the structural and dynamical aspects of mixed solvents will be necessary for predictive solution strategies in chemistry.

Funder

Division of Chemistry

American Chemical Society Petroleum Research Fund

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3