Partial tipping in bistable ecological systems under periodic environmental variability

Author:

Basak Ayanava1ORCID,Dana Syamal K.1ORCID,Bairagi Nandadulal1ORCID

Affiliation:

1. Centre for Mathematical Biology and Ecology, Department of Mathematics, Jadavpur University , Kolkata 700032, India

Abstract

Periodic environmental variability is a common source affecting ecosystems and regulating their dynamics. This paper investigates the effects of periodic variation in species growth rate on the population dynamics of three bistable ecological systems. The first is a one-dimensional insect population model with coexisting outbreak and refuge equilibrium states, the second one describes two-species predator–prey interactions with extinction and coexistence states, and the third one is a three-species food chain model where chaotic and limit cycle states may coexist. We demonstrate with numerical simulations that a periodic variation in species growth rate may cause switching between two coexisting attractors without crossing any bifurcation point. Such a switchover occurs only for a specific initial population density close to the basin boundary, leading to partial tipping if the frozen system is non-chaotic. Partial tipping may also occur for some initial points far from the basin boundary if the frozen system is chaotic. Interestingly, the probability of tipping shows a frequency response with a maximum for a specific frequency of periodic forcing, as noticed for equilibrium and non-equilibrium limit cycle systems. The findings suggest that unexpected outbreaks or abrupt declines in population density may occur due to time-dependent variations in species growth parameters. Depending on the selective frequency of the periodic environmental variation, this may lead to species extinction or help the species to survive.

Funder

University Grants Commission

Jadavpur University

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3