Gaussian attractive potential for carboxylate/cobalt surface interactions

Author:

Wu Xiaojing1ORCID,Steinmann Stephan N.1ORCID,Michel Carine1ORCID

Affiliation:

1. École Normale Supérieure de Lyon, CNRS, Laboratoire de Chimie UMR 5182 , 46 allée d’Italie, F-69364 Lyon, France

Abstract

Ligand-decorated metal surfaces play a pivotal role in various areas of chemistry, particularly in selective catalysis. Molecular dynamics simulations at the molecular mechanics level of theory are best adapted to gain complementary insights to experiments regarding the structure and dynamics of such organic films. However, standard force fields tend to capture only weak physisorption interactions. This is inadequate for ligands that are strongly adsorbed such as carboxylates on metal surfaces. To address this limitation, we employ the Gaussian Lennard-Jones (GLJ) potential, which incorporates an attractive Gaussian potential between the surface and ligand atoms. Here, we develop this approach for the interaction between cobalt surfaces and carboxylate ligands. The accuracy of the GLJ approach is validated through the analysis of the interaction of oxygen with two distinct cobalt surfaces. The accuracy of this method reaches a root mean square deviation (RMSD) of about 3 kcal/mol across all probed configurations, which corresponds to a percentage error of roughly 4%. Application of the GLJ force field to the dynamics of the organic layer on these surfaces reveals how the ligand concentration influences the film order, and highlights differing mobility in the x and y directions, attributable to surface corrugation on Co(112̄0). GLJ is versatile, suitable for a broad range of metal/ligand systems, and can, subsequently, be utilized to study the organic film on the adsorption/desorption of reactants and products during a catalytic process.

Funder

Agence Nationale de La Recherche

Contrat Plan Etat Region

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3