New features in turbulence dissipation

Author:

Abstract

An iconic phenomenon in turbulence is the complex energy transfer cascading across a wide range of scales. Despite large-scale motions, universal behaviors occur when isotropic condition is restored at Kolmogorov's scales. However, such mechanical equilibrium can be disrupted by external forces like shears and shock waves. A pervasive and long-lasting discussion is the dynamic processes involved in driving the systems toward local isotropy. We present a theoretical analysis that unveils the dissipative mechanism, which contributes to isotropic conditions. Surprisingly, the mechanism depends on the transport of vorticity and strain. The high-resolution shock-resolving data of shock-turbulence interactions support the findings of this new feature in dissipation. The physical characters of this dissipative mechanism and their contributions to isotropy and overall dissipation are discussed. Despite the dissipative connection, the new mechanism is not sign definite and is associated with other functions.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3