Density-dependent carrier-envelope phase shift in attosecond pulse generation from relativistically oscillating mirrors

Author:

Zagidullin Rishat1ORCID,Tietze Stefan23,Zepf Matt23,Wang Jingwei4ORCID,Rykovanov Sergey1ORCID

Affiliation:

1. Center for AI Technologies, Skolkovo Institute of Science and Technology 1 , Moscow, Russia

2. Helmholtz-Institute Jena 2 , Fröbelstieg 3, 07743 Jena, Germany

3. Friedrich-Schiller-Universität Jena, Physikalisch-Astronomische Fakultät 3 , Max-Wien-Platz 1, 07743 Jena, Germany

4. State Key Laboratory of High Field Laser Physics and Chinese Academy of Sciences Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences 4 , Shanghai 201800, China

Abstract

The carrier-envelope phase (CEP) φ0 is one of the key parameters in the generation of isolated attosecond pulses. In particular, “cosine” pulses (φ0 = 0) are best suited for generation of single attosecond pulses in atomic media. Such “cosine” pulses have the peak of the most intense cycle aligned with the peak of the pulse envelope, and therefore have the highest contrast between the peak intensity and the neighboring cycles. In this paper, the dynamics of single attosecond pulse generation from a relativistically oscillating plasma mirror is investigated. We use an elementary analytical model as well as particle-in-cell simulations to study few-cycle attosecond pulses. We find that the phase of the field driving the surface oscillations depends on the plasma density and preplasma scale length. This leads us to a counterintuitive conclusion: for the case of normal incidence and a sharp plasma–vacuum boundary, the CEP required for the generation of a single attosecond pulse phase is closer to φ0 = π/2 (a “sine” pulse), with the exact value depending on the plasma parameters.

Funder

Russian Science Foundation

Publisher

AIP Publishing

Subject

Electrical and Electronic Engineering,Nuclear Energy and Engineering,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3