A machine learning based computational approach for prediction of cation distribution in spinel crystal

Author:

Fang Ying1ORCID,Ohodnicki Paul R.1ORCID,Wang Guofeng1ORCID

Affiliation:

1. Department of Mechanical Engineering and Materials Science, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, USA

Abstract

In this study, a machine learning based computational approach has been developed to investigate the cation distribution in spinel crystals. The computational approach integrates the construction of datasets consisting of the energies calculated from density functional theory, the training of machine learning models to derive the relationship between system energy and structural features, and atomistic Monte Carlo simulations to sample the thermodynamic equilibrium structures of spinel crystals. It is found that the support vector machine model yields excellent performance in energy predictions based on spinel crystal structures. Furthermore, the developed computational approach has been applied to predict the cation distribution in single spinel MgAl2O4 and MgFe2O4 and double spinel MgAl2-aFeaO4. Agreeing with the available experimental data, the computational approach correctly predicts that the equilibrium degree of inversion of MgAl2O4 increases with temperature, whereas the degree of inversion of MgFe2O4 decreases with temperature. Additionally, it is predicted that the equilibrium occupancy of Mg cations at the tetrahedral and octahedral sites in MgAl2-aFeaO4 could be tuned as a function of chemical composition. Therefore, this study presents a reliable computational approach that can be extended to study the variation of cation distribution with processing temperature and chemical composition in a wide range of complex multi-cation spinel oxides with numerous applications.

Funder

National Science Foundation

Office of Naval Research Global

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3