Pulse overlap artifacts and double quantum coherence spectroscopy

Author:

Hedse Albin1ORCID,Kalaee Alex Arash Sand2ORCID,Wacker Andreas2ORCID,Pullerits Tõnu1ORCID

Affiliation:

1. Chemical Physics and NanoLund, Lund University 1 , P.O. Box 124, 22100 Lund, Sweden

2. Mathematical Physics and NanoLund, Lund University 2 , P.O. Box 118, 22100 Lund, Sweden

Abstract

The double quantum coherence (DQC) signal in nonlinear spectroscopy gives information about the many-body correlation effects not easily available by other methods. The signal is short-lived, consequently, a significant part of it is generated during the pulse overlap. Since the signal is at two times the laser frequency, one may intuitively expect that the pulse overlap-related artifacts are filtered out by the Fourier transform. Here, we show that this is not the case. We perform explicit calculations of phase-modulated two-pulse experiments of a two-level system where the DQC is impossible. Still, we obtain a significant signal at the modulation frequency, which corresponds to the DQC, while the Fourier transform over the pulse delay shows a double frequency. We repeat the calculations with a three-level system where the true DQC signal occurs. We conclude that with realistic dephasing times, the pulse-overlap artifact can be significantly stronger than the DQC signal. Our results call for great care when analyzing such experiments. As a rule of thumb, we recommend that only delays larger than 1.5 times the pulse length should be used.

Funder

Vetenskapsrådet

Energimyndigheten

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3