Electronic transport mechanisms in a thin crystal of the Kitaev candidateα-RuCl3 probed through guarded high impedance measurements

Author:

Barfield Patrick1ORCID,Tran Vinh1ORCID,Nagarajan Vikram2ORCID,Martinez Maya1ORCID,Diego Amirari1ORCID,Bergner Derek1ORCID,Lanzara Alessandra23,Analytis James G.23,Ojeda-Aristizabal Claudia1ORCID

Affiliation:

1. Department of Physics and Astronomy, California State University Long Beach 1 , Long Beach, California 90840, USA

2. Department of Physics, University of California Berkeley 2 , Berkeley, California 94720, USA

3. Materials Sciences Division, Lawrence Berkeley National Laboratory 3 , Berkeley, California 94720, USA

Abstract

α-RuCl3 is considered to be the top candidate material for the experimental realization of the celebrated Kitaev model, where ground states are quantum spin liquids with interesting fractionalized excitations. It is, however, known that additional interactions beyond the Kitaev model trigger in α-RuCl3 a long-range zigzag antiferromagnetic ground state. In this work, we investigate a nanoflake of α-RuCl3 through guarded high impedance measurements aimed at reaching the regime where the system turns into a zigzag antiferromagnet. We investigated a variety of temperatures (1.45–175 K) and out-of-plane magnetic fields (up to 11 T), finding a clear signature of a structural phase transition at ≈160 K as reported for thin crystals of α-RuCl3, as well as a thermally activated behavior at temperatures above ≈30 K, with a characteristic activation energy significantly smaller than the energy gap that we observe for α-RuCl3 bulk crystals through our angle resolved photoemission spectroscopy (ARPES) experiments. Additionally, we found that below ≈30 K, transport is ruled by Efros–Shklovskii variable range hopping (VRH). Most importantly, our data show that below the magnetic ordering transition known for bulk α-RuCl3 in the frame of the Kitaev–Heisenberg model (≈7 K), there is a clear deviation from VRH or thermal activation transport mechanisms. Our work demonstrates the possibility of reaching, through specialized high impedance measurements, the thrilling ground states predicted for α-RuCl3 at low temperatures in the frame of the Kitaev–Heisenberg model and informs about the transport mechanisms in this material in a wide temperature range.

Funder

Basic Energy Sciences

Division of Materials Research

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3