Anisotropic flow physics in diamond microchannels: Design implications for microfluidic rectifiers handling Newtonian fluids

Author:

Goli Sandeep,Saha Sandip K.ORCID,Agrawal AmitORCID

Abstract

The study explores anisotropic flow behavior in microchannels, which is crucial for advancing microfluidic rectifiers. Specifically, the investigation focuses on the directional flow behavior of Newtonian fluids within diamond-shaped microchannels, a topology holding significant promise across various disciplines. Unlike non-Newtonian fluids, Newtonian fluids lack inherent directional traits, needing high Reynolds numbers for inertial effects necessary for effective rectification in asymmetric flow structures. High Reynolds numbers in microchannels are challenging, but diamond microchannels uniquely exhibit inertial effects even at low Reynolds numbers, yet their potential for designing rectifiers is largely unexplored. The study presents two unique asymmetric diamond microchannel designs and conducts thorough three-dimensional numerical analyses to assess fluid flow across different design parameters. Rectification is quantified through fluid diodicity, demonstrating that configurations with higher width and aspect ratios and shorter lengths produce significant rectification effects. Examining velocity profiles and flow resistances in both directions illustrates irreversible flow physics. Notably, the observed maximum diodicity for the proposed design reaches 1.61 for Newtonian fluids, surpassing most previous designs by 11%–40%. Quantitative relationships between flow resistances in both directions and design variables through regression analysis allow determining flow resistances within ±8% and fluid diodicity within ±7% and ±10%, respectively, based on constant flow rate and pressure drop. These correlations provide valuable insights for the initial design of microfluidic rectifiers using these configurations. The results offer essential guidance for effectively designing microfluidic rectifiers using diamond microchannels in various scientific applications.

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3