The effects of polarization on the rotational diffusion of ions in organic ionic plastic crystals

Author:

Park Seowoo1,Park Hyungshick1ORCID,Park Chung Bin1ORCID,Sung Bong June1ORCID

Affiliation:

1. Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea

Abstract

Organic ionic plastic crystals (OIPCs), which consist of organic molecular ions, are considered excellent candidates for solid electrolytes due to their high ionic conductivity in solid phases. Molecular ions undergo either rotational or conformational relaxation at certain temperatures in OIPCs. There have been molecular simulations to understand the rotational motion. The polarizability of ions was, however, often ignored in simulations due to the high computational cost. Since the polarizability may affect the translational diffusion, the ionic conductivity, and the phase transition of ionic liquids, it should be of interest to investigate how the polarizability would affect the rotational diffusion of ions in solid phases. In this work, we perform extensive atomistic molecular dynamics simulations for two different kinds of OIPCs, 1-methyl-3-methylimidazolium hexafluorophosphate ([MMIM][PF6]) and 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]). We employ various simulation models for ions by turning on and off the polarization in their interaction potentials. We find that the polarizability hardly affects the density, the crystalline structure, and the phase transition of both OIPCs. However, a certain rotational motion, especially the rotational diffusion of [Formula: see text] in [MMIM][PF6] OIPCs, is enhanced by a factor of up to four when the polarizability is turned on. The [Formula: see text] in [MMIM][PF6] OIPCs undergoes rotational hopping motions more significantly due to polarizability. We find that the rotational diffusion of a certain ion can be enhanced only when the polarization results in a significant change in the dipole moment of the neighboring ions around the ion.

Funder

National Research Foundation of Korea

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3