Sessile droplet evaporation in the atmosphere of different gases under forced convection

Author:

Korenchenko Anna E.1ORCID,Zhukova Anna A.2ORCID

Affiliation:

1. MIREA—Russian Technological University, Moscow 107076, Russia

2. I.M. Sechenov First Moscow State Medical University, Moscow 119435, Russia

Abstract

The phenomenon of evaporation from the surface of a liquid droplet into a neutral noncondensible gas was numerically studied by taking forced convection gaseous flow into account. The mathematical model considers the effects of surface tension, gravitational force, viscosity of both liquid and gaseous media, as well as the Stefan flow from the droplet surface, possible free gravitational convection, and the Marangoni convection in droplets, and it is designed to describe diffusion-limited evaporation. We consider the diffusion-limited evaporation process when the diffusive gas flux to the droplet surface is compensated by the convective Stefan flow from the surface. The results indicate an interaction of the liquid and gaseous media. Convective gas flows cause the liquid to move and a vortex to occur in the droplet. The flow velocities in a vortex are 103 times less than the characteristic velocity of forced convection flow in air. The droplet surrounded by gaseous flow changes its shape and oscillates, which causes a gas-density wave. Calculations have shown that the diffusion-limited evaporation rate does not change in the presence of forced convection, which contradicts most of the known experimental works. The possible reason for this discrepancy is the presence of non-equilibrium conditions at the liquid–gas interface in experiments. This leads to a consequent change of the evaporation mode to non-diffusive, while the numerical model postulates the Stefan condition and diffusion-limited evaporation.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3