Electric field modulated configuration and orientation of aqueous molecule chains

Author:

Wang Jiang1ORCID,Li Zhiling1ORCID

Affiliation:

1. College of Science, Guizhou Institute of Technology , Boshi Road, Dangwu Town, Gui’an New District, Guizhou 550025, China

Abstract

Understanding how external electric fields (EFs) impact the properties of aqueous molecules is crucial for various applications in chemistry, biology, and engineering. In this paper, we present a study utilizing molecular dynamics simulation to explore how direct-current (DC) and alternative-current (AC) EFs affect hydrophobic (n-triacontane) and hydrophilic (PEG-10) oligomer chains. Through a machine learning approach, we extract a 2-dimensional free energy (FE) landscape of these molecules, revealing that electric fields modulate the FE landscape to favor stretched configurations and enhance the alignment of the chain with the electric field. Our observations indicate that DC EFs have a more prominent impact on modulation compared to AC EFs and that EFs have a stronger effect on hydrophobic chains than on hydrophilic oligomers. We analyze the orientation of water dipole moments and hydrogen bonds, finding that EFs align water molecules and induce more directional hydrogen bond networks, forming 1D water structures. This favors the stretched configuration and alignment of the studied oligomers simultaneously, as it minimizes the disruption of 1D structures. This research deepens our understanding of the mechanisms by which electric fields modulate molecular properties and could guide the broader application of EFs to control other aqueous molecules, such as proteins or biomolecules.

Funder

Natural Science Foundation of Guizhou Province

Startup Project for High-Level Talents of Guizhou Institute of Technology

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3