Control of non-Hermitian skin effect by staggered synthetic gauge fields

Author:

Tang Huiyan1ORCID,Wang Ziteng1ORCID,Tang Liqin1ORCID,Song Daohong1ORCID,Chen Zhigang1ORCID,Buljan Hrvoje12ORCID

Affiliation:

1. TEDA Applied Physics Institute and School of Physics, Nankai University 1 , Tianjin 300457, China

2. Department of Physics, Faculty of Science, University of Zagreb 2 , Bijenička Cesta 32, Zagreb 10000, Croatia

Abstract

Synthetic gauge fields introduce an unconventional degree of freedom for studying many fundamental phenomena in different branches of physics. Here, we propose a scheme to use staggered synthetic gauge fields for control of the non-Hermitian skin effect (NHSE). A modified Su–Schrieffer–Heeger model is employed, where two dimer chains with non-reciprocal coupling phases are coupled, exhibiting non-trivial point-gap topology and the NHSE. In contrast to previous studies, the skin modes in our model are solely determined by the coupling phase terms associated with the staggered synthetic gauge fields. By manipulating such gauge fields, we can achieve maneuvering of skin modes as well as the bipolar NHSE. As a typical example, we set up a domain wall by imposing different synthetic gauge fields on two sides of the wall, thereby demonstrating flexible control of the non-Hermitian skin modes at the domain wall. Our scheme opens a new avenue for the creation and manipulation of NHSE by synthetic gauge fields, which may find applications in beam shaping and non-Hermitian topological devices.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3