A local orientational order parameter for systems of interacting particles

Author:

Çamkıran John1ORCID,Parsch Fabian12ORCID,Hibbard Glenn D.1ORCID

Affiliation:

1. Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada

2. Department of Mathematics, University of Toronto, Toronto, Ontario M5S 2E4, Canada

Abstract

Many physical systems are well modeled as collections of interacting particles. Nevertheless, a general approach to quantifying the absolute degree of order immediately surrounding a particle has yet to be described. Motivated thus, we introduce a quantity E that captures the amount of pairwise informational redundancy among the bonds formed by a particle. Particles with larger E have less diversity in bond angles and thus simpler neighborhoods. We show that E possesses a number of intuitive mathematical properties, such as increasing monotonicity in the coordination number of Platonic polyhedral geometries. We demonstrate analytically that E is, in principle, able to distinguish a wide range of structures and conjecture that it is maximized by the icosahedral geometry under the constraint of equal sphere packing. An algorithm for computing E is described and is applied to the structural characterization of crystals and glasses. The findings of this study are generally consistent with existing knowledge on the structure of such systems. We compare E to the Steinhardt order parameter Q6 and polyhedral template matching (PTM). We observe that E has resolution comparable to Q6 and robustness similar to PTM despite being much simpler than the former and far more informative than the latter.

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3