A wide-range semiclassical self-consistent average atom model

Author:

Poliukhin A. S.12ORCID,Dyachkov S. A.13ORCID,Malyugin A. A.12ORCID,Levashov P. R.12ORCID

Affiliation:

1. Joint Institute for High Temperatures of Russian Academy of Sciences 1 , 13/2 Izhorskaya st., 125412 Moscow, Russia

2. Moscow Institute of Physics and Technology 2 , 9 Institutskiy per., 141701 Dolgoprudny, Moscow Region, Russia

3. Dukhov Research Institute of Automatics (VNIIA) 3 , 22 Sushchevskaya st., 127030 Moscow, Russia

Abstract

The discovery of material properties at extremes, which are essential for high energy density physics development, requires the most advanced experimental facilities, theories, and computations. Nowadays, it is possible to model properties of matter in such conditions using the state-of-the-art density functional theory (DFT) or path-integral Monte Carlo approaches with remarkable precision. However, fundamental and computational limitations of these methods impede their practical usage, while wide-range thermodynamic and transport models of plasma are required. As a consequence, an average atom (AA) framework is still relevant today and has been attracting more and more attention lately. The self-consistent field and electron density in an atomic cell is usually obtained using the Thomas–Fermi (TF), Hartree–Fock, Kohn–Sham approaches, or their extensions. In this study, we present the AA model, where semiclassical wave functions are used for bound states, while free electrons are approximated by the TF model with a thermodynamically consistent energy boundary. The model is compared in various regions of temperatures and pressures with the reference data: the Saha model for rarefied plasma, DFT for warm dense matter, and experimental shock Hugoniot data. It is demonstrated that a single AA model may provide a reasonable agreement with the established techniques at low computational cost and with stable convergence of the self-consistent field.

Publisher

AIP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3