Exploring plasmonic effect on exciton transport: A theoretical insight from macroscopic quantum electrodynamics

Author:

Weng Shih-Han12ORCID,Hsu Liang-Yan123ORCID,Ding Wendu4ORCID

Affiliation:

1. Institute of Atomic and Molecular Sciences, Academia Sinica 1 , Taipei 10617, Taiwan

2. Department of Chemistry, National Taiwan University 2 , Taipei 10617, Taiwan

3. Physics Division, National Center for Theoretical Sciences 3 , Taipei, Taiwan

4. Department of Chemistry, Wake Forest University 4 , Winston-Salem, North Carolina 27109, USA

Abstract

Exciton transport in extended molecular systems and how to manipulate such transport in a complex environment are essential to many energy and optical-related applications. We investigate the mechanism of plasmon-coupled exciton transport by using the Pauli master equation approach, combined with kinetic rates derived from macroscopic quantum electrodynamics. Through our theoretical framework, we demonstrate that the presence of a silver nanorod induces significant frequency dependence in the ability of transporting exciton through a molecule chain, indicated by the exciton diffusion coefficient, due to the dispersive nature of the silver dielectric response. Compared with the same system in vacuum, great enhancement (up to a factor of 103) in the diffusion coefficient can be achieved by coupling the resonance energy transfer process to localized surface plasmon polariton modes of the nanorod. Furthermore, our analysis reveals that the diffusion coefficients with the nearest-neighbor coupling approximation are ∼10 times smaller than the results obtained beyond this approximation, emphasizing the significance of long-range coupling in exciton transport influenced by plasmonic nanostructures. This study not only paves the way for exploring practical approaches to study plasmon-coupled exciton transport but also provides crucial insights for the design of innovative plasmon-assisted photovoltaic applications.

Funder

Academia Sinica

National Science and Technology Council

Wake Forest University

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3