Shear thinning of non-Brownian suspensions and its variation at different ambient conditions

Author:

Lin YuanORCID,Lin Peiwen,Wang Ying,Chen JiawangORCID,He ZhiguoORCID,Pähtz Thomas1ORCID,Phan-Thien Nhan2ORCID

Affiliation:

1. Institute of Port, Coastal and Offshore Engineering, Ocean College, Zhejiang University 4 , Zhoushan 316021, China

2. Department of Mechanical Engineering, National University of Singapore 5 , Singapore 117575

Abstract

Immiscible contaminants are commonly involved in naturally occurring suspensions. The resulting variations in their flow behavior have rarely been evaluated. Here, we investigate the variation in the viscosity of an oil-based two-phase suspension over a period of 2 years, which is exposed to the ambient air at the production stage. We find that the absolute humidity of air, which strongly varies with seasons, causes exchanges of water droplets with the suspension, substantially altering its shear-thinning behavior. Only in winter, when the humidity is low, is the latter close to that of the ideal two-phase suspensions. Our measurements suggest that when the surface roughness of the suspended solid particles is sufficiently low, immersed droplets remain in a free state, effectively increasing repulsion between particles, weakening shear thinning. In contrast, when the roughness is sufficiently high, immersed droplets become trapped on the particle surfaces, inducing an attractive particle interaction via water bridging, enhancing shear thinning.

Funder

National Natural Science Foundations of China

Zhejiang Provincial National Science Foundation of China

Finance Science and Technology Project of Hainan Province

2022 Research Program of Sanya Yazhou Bay Science and Technology City

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3