Affiliation:
1. Institute of Port, Coastal and Offshore Engineering, Ocean College, Zhejiang University 4 , Zhoushan 316021, China
2. Department of Mechanical Engineering, National University of Singapore 5 , Singapore 117575
Abstract
Immiscible contaminants are commonly involved in naturally occurring suspensions. The resulting variations in their flow behavior have rarely been evaluated. Here, we investigate the variation in the viscosity of an oil-based two-phase suspension over a period of 2 years, which is exposed to the ambient air at the production stage. We find that the absolute humidity of air, which strongly varies with seasons, causes exchanges of water droplets with the suspension, substantially altering its shear-thinning behavior. Only in winter, when the humidity is low, is the latter close to that of the ideal two-phase suspensions. Our measurements suggest that when the surface roughness of the suspended solid particles is sufficiently low, immersed droplets remain in a free state, effectively increasing repulsion between particles, weakening shear thinning. In contrast, when the roughness is sufficiently high, immersed droplets become trapped on the particle surfaces, inducing an attractive particle interaction via water bridging, enhancing shear thinning.
Funder
National Natural Science Foundations of China
Zhejiang Provincial National Science Foundation of China
Finance Science and Technology Project of Hainan Province
2022 Research Program of Sanya Yazhou Bay Science and Technology City
Subject
Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献