Giant anomalous Nernst effect in polycrystalline thin films of the Weyl ferromagnet Co2MnGa

Author:

Uesugi Ryota1ORCID,Higo Tomoya12ORCID,Nakatsuji Satoru12345ORCID

Affiliation:

1. Institute for Solid State Physics, The University of Tokyo 1 , Kashiwa, Chiba 277-8581, Japan

2. Department of Physics, The University of Tokyo 2 , Bunkyo-ku, Tokyo 113-0033, Japan

3. Trans-scale Quantum Science Institute, The University of Tokyo 3 , Bunkyo-ku, Tokyo 113-0033, Japan

4. Institute for Quantum Matter Department of Physics and Astronomy, Johns Hopkins University 4 , Baltimore, Maryland 21218, USA

5. Canadian Institute for Advanced Research 5 , Toronto, Ontario M5G 1Z7, Canada

Abstract

Recent discoveries of topological magnets have opened up diverse spintronic applications of large responses due to their unique band structures. A prominent example is the anomalous Nernst effect (ANE), a transverse magneto-thermoelectric phenomenon that produces an electromotive force orthogonal to the heat flux and magnetization. Unlike the Seebeck effect generating an electromotive force parallel to the heat flux, transverse thermoelectric properties of ANE well fit in the lateral configurations of devices fabricated through conventional thin-film fabrication processes. This feature enables distinct device applications through a simplified fabrication process, reduced production cost, extensive area coverage, and enhanced flexibility. In this study, we report the highest ANE ever recorded among all reported polycrystalline films to date by using a topological ferromagnet. In particular, we have fabricated high-quality polycrystalline thin films of the Weyl ferromagnet Co2MnGa that exhibit a large ANE of − 5.4 μV/K. By retaining a high film density, we demonstrate the sizable ANE in the films obtained using a simple fabrication process well suited for device developments. Establishing a thin-film fabrication technique capable of producing a giant ANE facilitates spintronic applications of the Weyl ferromagnet, including diverse ANE-based device applications.

Funder

New Energy and Industrial Technology Development Organization

Japan Science and Technology Agency (JST)-Mirai Program

JST-CREST

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3