Replica permutation with solute tempering for molecular dynamics simulation and its application to the dimerization of amyloid-β fragments

Author:

Fukuhara Daiki12ORCID,Itoh Satoru G.123ORCID,Okumura Hisashi123ORCID

Affiliation:

1. Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan

2. Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan

3. Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan

Abstract

We propose the replica permutation with solute tempering (RPST) by combining the replica-permutation method (RPM) and the replica exchange with solute tempering (REST). Temperature permutations are performed among more than two replicas in RPM, whereas temperature exchanges are performed between two replicas in the replica-exchange method (REM). The temperature transition in RPM occurs more efficiently than in REM. In REST, only the temperatures of the solute region, the solute temperatures, are exchanged to reduce the number of replicas compared to REM. Therefore, RPST is expected to be an improved method taking advantage of these methods. For comparison, we applied RPST, REST, RPM, and REM to two amyloid-β(16–22) peptides in explicit water. We calculated the transition ratio and the number of tunneling events in the temperature space and the number of dimerization events of amyloid-β(16–22) peptides. The results indicate that, in RPST, the number of replicas necessary for frequent random walks in the temperature and conformational spaces is reduced compared to the other three methods. In addition, we focused on the dimerization process of amyloid-β(16–22) peptides. The RPST simulation with a relatively small number of replicas shows that the two amyloid-β(16–22) peptides form the intermolecular antiparallel β-bridges due to the hydrophilic side-chain contact between Lys and Glu and hydrophobic side-chain contact between Leu, Val, and Phe, which stabilizes the dimer of the peptides.

Funder

Japan Society for the Promotion of Science

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3