Sequencing waves in single-transducer acoustophoretic patterning of microspheres

Author:

Wang Y. J.12ORCID,Chai L. A.1ORCID,Zubajlo R. E.12ORCID,Anthony B. W.12ORCID

Affiliation:

1. Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

2. Department of Mechanical Engineering and Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

Abstract

Acoustophoretic assembly uses acoustic waves to move dispersed particles into a geometric pattern. The pattern is typically created in a single step and often relies on wave-forming techniques to achieve the desired pattern geometries. We show that multiple acoustic waves can be applied sequentially in a multi-step process to create particle patterns not achievable by the individual waves alone. We demonstrate this approach in spherical particles using two planar pseudo-standing waves. Applied individually, each of the two waves would create linear particle bands with uniform spacing in between the bands. However, when applied sequentially, the banding pattern created in the first step is further manipulated by the second wave to create non-uniform spacing in between the bands. The experimentally achieved particle pattern geometry agrees well with the theoretical prediction.

Funder

MIT Skoltech Initiative as the funding source

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3