Demonstration of Big Bang-like patterns through logic-implemented DNA algorithmic assembly

Author:

Park Suyoun1,Park Sung Ha1ORCID

Affiliation:

1. Department of Physics and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea

Abstract

A DNA algorithm-based logic gate provides an efficient platform for generating various patterns through self-assembly. Self-assembly algorithms using M-input N-output logic gates are easily implemented in DNA tiles. The patterns generated by a 3-input 1-output logic gate show interesting features, such as demonstrations of mathematical functions, physical phenomena observed in nature, and logic operators. We notice that among the 3-input 1-output logic rules, the algorithmic lattices generated by R30 show interesting Big Bang-like patterns. A pattern generated by R30 and specific initial values shows expanding characteristics during the growth of lattices that resemble the Big Bang expansion of the universe. In this study, we demonstrate Big Bang-like patterns using simulations generated by R30 and analyze pattern sizes as a function of growth step number. We discuss pattern sizes and pattern-size-expansion-speeds, both of which are heavily influenced by perturbed initial values. We examine eight different perturbed initial values that induce Big Bang-like patterns with the generation of multiple pattern sizes during the growth of patterns. In addition, we fabricate patterns using DNA algorithmic self-assembly generated by the R30 logic rule with a 3-input 1-output logic operation. The generated algorithmic patterns are visualized by an atomic force microscope. Our method allows the generation and analysis of naturally occurring patterns, such as those found on lizard skin and Zelkova serrata lenticel patterns.

Funder

Sungkyunkwan University

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3