Synergizing intrinsic symmetry breaking with spin–orbit torques for field-free perpendicular magnetic tunnel junction

Author:

Zhou Jing1ORCID,Huang Lisen1ORCID,Yap Sherry Lee Koon1ORCID,Lin Dennis Jing Xiong1ORCID,Chen Bingjin2ORCID,Chen Shaohai1ORCID,Wong Seng Kai1ORCID,Qiu Jinjun1,Lourembam James1ORCID,Soumyanarayanan Anjan13ORCID,Lim Sze Ter1ORCID

Affiliation:

1. Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR) 1 , 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore

2. Institute of High Performance Computing (IHPC), Agency for Science Technology and Research (A*STAR) 2 , 1 Fusionopolis Way, #16-16, Connexis North, Singapore 138632, Republic of Singapore

3. Department of Physics, National University of Singapore 3 , Singapore 117551, Republic of Singapore

Abstract

Current-induced spin–orbit torque (SOT) facilitates the ultrafast electrical manipulation of magnetic tunnel junction (MTJ), which is a leading non-volatile technology for the microelectronic industry. The key bottleneck to the commercial application of SOT-MTJ is the absence of a practicable symmetry-breaking scheme to switch perpendicular magnetization without an external magnetic field. Here, we demonstrate the wafer-scale realization of internalized field-free switching in perpendicular SOT-MTJ using conventional materials and device structure. We utilize a dual-function tungsten (W) spacer, which generates sizable SOT while concomitantly breaking symmetry via interlayer exchange coupling (IEC). Tuning the W thickness enables field-free switching with two types of IEC. An optimized combination of SOT and IEC ensures competitive switching performance, with our device exhibiting excellent thermal stability, low switching current density, and fast operating speed. This work builds the long-sought bridge between SOT manipulation of magnetization and wafer-scale field-free perpendicular MTJ. It underscores the urgent need to incorporate perpendicular SOT-MTJ in integrated circuits for applications in logic, memory, and unconventional computing.

Funder

Institute of Materials Research and Engineering

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3