Suppression of spin pumping at metal interfaces

Author:

Lim Youngmin1ORCID,Nepal Bhuwan2,Smith David A.1ORCID,Wu Shuang1ORCID,Srivastava Abhishek2ORCID,Nakarmi Prabandha2ORCID,Mewes Claudia2,Jiang Zijian1ORCID,Gupta Adbhut1ORCID,Viehland Dwight D.3ORCID,Klewe Christoph4ORCID,Shafer Padraic4ORCID,Park In Jun5ORCID,Mabe Timothy5ORCID,Amin Vivek P.5ORCID,Heremans Jean J.1ORCID,Mewes Tim2ORCID,Emori Satoru1ORCID

Affiliation:

1. Department of Physics, Virginia Tech 1 , Blacksburg, Virginia 24061, USA

2. Department of Physics and Astronomy, The University of Alabama 2 , Tuscaloosa, Alabama 35487, USA

3. Department of Materials Science and Engineering, Virginia Tech 3 , Blacksburg, Virginia 24061, USA

4. Advanced Light Source, Lawrence Berkeley National Laboratory 4 , Berkeley, California 94720, USA

5. Department of Physics, Indiana University - Purdue University Indianapolis 5 , Indianapolis, Indiana 46202, USA

Abstract

An electrically conductive metal typically transmits or absorbs a spin current. Here, we report on evidence that interfacing two metal thin films can suppress spin transmission and absorption. We examine spin pumping in spin-source/spacer/spin-sink heterostructures, where the spacer consists of metallic Cu and Cr thin films. The Cu/Cr spacer largely suppresses spin pumping—i.e., neither transmitting nor absorbing a significant amount of spin current—even though Cu or Cr alone transmits a sizable spin current. The antiferromagnetism of Cr is not essential for the suppression of spin pumping, as we observe similar suppression with Cu/V spacers with V as a nonmagnetic analog of Cr. We speculate that diverse combinations of spin-transparent metals may form interfaces that suppress spin pumping, although the underlying mechanism remains unclear. Our work may stimulate a new perspective on spin transport in metallic multilayers.

Funder

Division of Materials Research

Office of Advanced Cyberinfrastructure

Basic Energy Sciences

Office of Science

Institute for Critical Technologies and Applied Science, Virginia Tech

Macromolecules Innovation Institute

Office of the Vice President for Research and Innovation

Publisher

AIP Publishing

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3