First measurements of energetic protons in Mega Amp Spherical Tokamak Upgrade (MAST-U)

Author:

Aboutaleb A.1ORCID,Allan S. Y.2,Boeglin W. U.1ORCID,Cecconello M.34ORCID,Jackson A.1ORCID,McClements K. G.2ORCID,Parr E.2ORCID,

Affiliation:

1. Department of Physics, Florida International University 1 , Miami, Florida 33199, USA

2. United Kingdom Atomic Energy Authority, Culham Campus 2 , Abingdon OX14 3DB, United Kingdom

3. Department of Physics, Durham University 3 , Durham DH1 3LE, United Kingdom

4. Department of Physics and Astronomy, Uppsala University 4 , Uppsala SE-75120, Sweden

Abstract

First proton production rates from the d(d,p)t reaction in the Mega Amp Spherical Tokamak Upgrade (MAST-U) are measured. The data were taken during the MAST-U experimental campaign with an upgraded version of the proton detector (PD) previously used in MAST. The new detector array consists of three collimated silicon surface barrier detectors with a depletion depth of 300 μm and a collimated 120 μm thick diamond detector, mounted on the MAST-U reciprocating probe arm. This array measures the energies of unconfined energetic 3 MeV protons and 1 MeV tritons mainly produced by beam-thermal DD reactions during neutral beam injection heating. Diamond detectors have the potential to be uniquely suited to detect charged fusion products as they promise to be much more radiation resistant and much less sensitive to temperature variations compared to silicon-based detectors. Using silicon and diamond-based detectors simultaneously allowed us to directly compare the performance of these two detector types. PD particle rates measured during different plasma scenarios are presented and compared to neutron rates measured using the neutron camera upgrade and TRANSP predictions.

Funder

US Department of Energy

UK EPSRC Energy Program

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3