Three-dimensional measurement of the droplets out of focus in shadowgraphy systems via deep learning-based image-processing method

Author:

Wang Zhibo1ORCID,He Feng1,Zhang Haixiang1,Hao Pengfei12ORCID,Zhang Xiwen1,Li Xiangru1ORCID

Affiliation:

1. Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China

2. AVIC Aerodynamics Research Institute Joint Research Center for Advanced Materials and Anti-Icing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China

Abstract

For the shadowgraphy techniques with a single camera, it is difficult to accurately obtain the shape, size, and depth location of the droplets out of focus due to the defocus blur. This paper proposed a deep learning-based method to recover the sharp images and infer the depth information from the defocused blur droplets images. The proposed model comprising of a defocus map estimation subnetwork and a defocus deblur subnetwork is optimized with a two-stage strategy. To train the networks, the synthetic blur data generated by the Gauss kernel method are utilized as the input data, which mimic the defocused images of droplets. The proposed approach has been assessed based on synthetic images and real sphere blur images. The results demonstrate that our method has satisfactory performance both in terms of depth location estimation and droplet size measurement, e.g., the diameter relative error is less than 5% and the location error is less than 1 mm for the sphere with a diameter of more than 1 mm. Moreover, the present model also exhibits considerable generalization and robustness against the transparent ellipsoid and the random background noise. A further application of the present model to the measurement of transparent water droplets generated by an injector is also explored and illustrates the practicability of the present model in real experiments. The present study indicates that the proposed learning-based method is promising for the three-dimensional (3D) measurement of spray droplets via a combination of shadowgraphy techniques using a single camera, which will greatly reduce experimental costs and complexity.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3