Tunable coupling of a quantum phononic resonator to a transmon qubit via galvanic-contact flip-chip architecture

Author:

Ruan Xinhui123ORCID,Li Li14ORCID,Liang Guihan14ORCID,Zhao Silu14,Wang Jia-heng5,Bu Yizhou14,Chen Bingjie14,Song Xiaohui1ORCID,Li Xiang14,Zhang He14,Wang Jinzhe14,Zhao Qianchuan2ORCID,Xu Kai16,Fan Heng146ORCID,Liu Yu-xi5ORCID,Zhang Jing78,Peng Zhihui36ORCID,Xiang Zhongcheng16ORCID,Zheng Dongning146ORCID

Affiliation:

1. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences 1 , Beijing 100190, China

2. Department of Automation, Tsinghua University 2 , Beijing 100084, People's Republic of China

3. Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University 3 , Changsha 410081, People's Republic of China

4. School of Physical Sciences, University of Chinese Academy of Sciences 4 , Beijing 100049, China

5. School of Integrated Circuits, Tsinghua University 5 , Beijing 100084, China

6. Hefei National Laboratory 6 , Hefei 230088, China

7. School of Automation Science and Engineering, Xi'an Jiaotong University 7 , Xi'an 710049, China

8. MOE Key Lab for Intelligent Networks and Network Security, Xi'an Jiaotong University 8 , Xi'an 710049, China

Abstract

A hybrid system with tunable coupling between phonons and qubits shows great potential for advancing quantum information processing. In this work, we demonstrate strong and tunable coupling between a surface acoustic wave resonator and a transmon qubit based on the galvanic-contact flip-chip technique. The coupling strength varies from 2π× 7.0 to −2π× 20.6 MHz, which is extracted from different vacuum Rabi oscillation frequencies. The phonon-induced ac Stark shift of the qubit at different coupling strengths is also shown. Our approach offers a good experimental platform for exploring quantum acoustics and hybrid systems.

Funder

National Natural Science Foundation of China

Laoshan Laboratory

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3