The linear-time-invariance notion to the Koopman analysis: The architecture, pedagogical rendering, and fluid–structure association

Author:

Li Cruz Y.12ORCID,Chen Zengshun1ORCID,Lin Xisheng2ORCID,Weerasuriya Asiri Umenga2ORCID,Zhang Xuelin3ORCID,Fu Yunfei2ORCID,Tse Tim K. T.2ORCID

Affiliation:

1. Department of Civil Engineering, Chongqing University, Chongqing, China

2. Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China

3. School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, China

Abstract

This work augments a Linear-Time-Invariance (LTI) notion to the Koopman analysis, finding an invariant subspace on which consistent Koopman modes are expanded with fluid mechanics implications. The work also develops the Koopman-LTI architecture—a systematic procedure to associate fluid excitation and structure surface pressure by matching Koopman eigen tuples, establishing fluid–structure correspondences that examine fluid–structure interactions (FSIs) at new angles. The data-driven, modular architecture also exhibits the potential to evolve with advances in Koopman algorithms. A pedagogical prism wake example demonstrated that the Koopman-LTI generated a near-perfect linearization of nonlinear FSI dynamics involving inhomogeneous anisotropic turbulence, with mean and root-mean-squared errors of O−12 and O−9, respectively; the infinite-dimensional Koopman modes were also approximated with O−8 error. The subcritical wake during shear layer transition II was also reduced into only six dominant excitation-response Koopman duplets. The upstream and crosswind walls constitute a dynamically unified interface dominated by only two mechanisms. The downstream wall remains a distinct interface and is dominated by four other mechanisms. The complete revelation of the prism wake comes down to understanding the six mechanisms, which Part II [Li et al., “A parametric and feasibility study for data sampling of the dynamic mode decomposition: Range, resolution, and universal convergence states,” Nonlinear Dyn. 107(4), 3683–3707 (2022)] will address by investigating the physics implications of the duplets' in-synch phenomenological features. Finally, the analysis revealed z-velocity's marginal role in the convection-dominated free-shear flow, Reynolds stresses' spectral description of cascading eddies, wake vortices' sensitivity to dilation and indifference to distortion, and structure responses' origin in vortex activities.

Funder

Key project of Technological Innovation and Application Development in Chongqing

Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory

Natural Science Foundation of Chongqing

Research Grants Council, University Grants Committee

Fundamental Research Funds for Central Universities of China

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3