Infrared-driven pyroelectric effect in magnetoelectric sensor for suspended on-chip magnetic nanoparticles quantification

Author:

Pathak Pankaj1ORCID,Yadav Vinit Kumar1ORCID,Das Samaresh2ORCID,Mallick Dhiman1ORCID

Affiliation:

1. Department of Electrical Engineering, Indian Institute of Technology Delhi 1 , New Delhi 110016, India

2. Centre for Applied Research in Electronics, Indian Institute of Technology Delhi 2 , New Delhi 110016, India

Abstract

Precise and real-time quantification of suspended magnetic nanoparticles (MNPs) is essential for augmenting the efficacy of the present MNP-based lab-on-a-chip systems. Existing MNP quantification techniques use bulky external electromagnets, which make such techniques expensive, energy-inefficient, and result in significant side effects on the surrounding healthy tissues. Here, we report on the development of an infrared-driven, Ni/lead magnesium niobate–lead titanate (PMN–PT) magnetoelectric (ME) heterostructure-based sensor that enables rapid assessment of the suspended MNPs in a fluidic environment without using an external magnetic field. The injected MNPs are captured by the generated magnetic field gradient of the Ni thin film. Subsequently, the optothermal-pyroelectric property of the underlying PMN–PT layer is utilized to quantitatively assess the MNPs' concentration. Under the incident infrared pulse at zero bias voltage, the device shows different transient photocurrent responses against varied MNP concentrations with a sensitivity of 0.29 nA mg−1 ml and a response time of less than 2 s. Such a ME device can improve the efficacy of current ME-based lab-on-a-chip systems, where a single device can capture, manipulate, as well as quantitatively assess the MNPs efficiently for critical biomedical applications such as drug delivery, drug regulation, and hyperthermia.

Funder

Department of Science and Technology, Ministry of Science and Technology, India

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3