Investigating the validity of the Bosanquet equation for predicting the self-diffusivities of fluids inside nanotubes using equilibrium molecular dynamics simulations

Author:

Chen Qu1ORCID,Zhou Jianping1

Affiliation:

1. School of Biological and Chemical Engineering, Zhejiang University of Science and Technology , Hangzhou 310023, People’s Republic of China

Abstract

The self-diffusion of fluids in nanotubes generally consists of both molecule–molecule and molecule–wall interactions, which can be quantitatively described by the Knudsen mechanism and the molecular mechanism, respectively. Combining these two effects, the Bosanquet equation is generally used to predict the self-diffusivities of molecules in one-dimensional nanopores. In this work, equilibrium molecular dynamics simulations were employed to investigate the validity of the equation in predicting the self-diffusivities of fluids inside carbon, boron nitride, and silicon carbide nanotubes with diameters from ∼1.0 to 4.3 nm. Our results indicate that although the Bosanquet equation can predict the self-diffusivities of H2, Ar, CH4, CO2, C2H6, and C3H8 in carbon nanotubes in the same order of magnitude, the accuracy of these predictions is generally rather poor. At high and moderate loadings, the large deviation mainly results from the limited accuracy of the simplistic free path model, which tends to neglect the intermolecular forces of fluid molecules. However, at low loadings, the failure of the Bosanquet equation can be traced to the failure of the Knudsen model, which largely underestimates the diffusivity in nanotubes due to the smoothness of the tube wall. Furthermore, the Bosanquet equation fails to predict the self-diffusivities of H2O in confinement since the presence of hydrogen bonding violates the mean free path theory. It is suggested that further modification of this extrapolation should take into account the intermolecular forces of fluid molecules as well as the smoothness of the tube wall.

Funder

Natural Science Foundation of Zhejiang Province

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3