Fundamental understanding of open keyhole effect in plasma arc welding

Author:

Abstract

The keyhole arc welding technique has the advantage of improving welding efficiency by utilizing a stable keyhole mode. Accurate understanding of the keyhole effect is necessary to enhance the welding quality. Due to the high temperature and strong arc force involved, the complex gas–liquid–solid interactions in the complete keyhole process need to be explored. In order to fully demonstrate open keyhole mode welding, a three-tier sandwiched model based on multiphysics and multiphase effects was developed. The top layer of the model is filled with plasma arc, which gradually fuses and penetrates through the middle metal layer. Finally, it enters the third layer, resulting in an open keyhole mode. Multiphysics phenomena due to the plasma arc are fully included in the model, and the gas–liquid–solid interactions are calculated by combining the Volume of Fluid technique and the Enthalpy-porous technique. Arc ignition and dynamic open keyhole effect are demonstrated, and an arc discharge is shown from the open keyhole exit. The arc reflection phenomenon is observed as the arc is blocked by the weld pool frontier. The electric current path varies with the welding movement, and most of the current comes from the weld pool frontier. An experiment was conducted to obtain weld pool and keyhole images, which basically agree with the calculated results. Additionally, the calculated open keyhole time and electric potential drops also coincide well with experimental data.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3