Non-limited vibrational effect on shock-induced phase transitions of condensed fluid in hard-sphere model

Author:

Zheng Yue1ORCID,Xu Junjun2ORCID,Tang Ke1

Affiliation:

1. College of Chemical and Environmental Engineering, Liaoning University of Technology 1 , Jinzhou, Liaoning 121000, China

2. College of Chemistry and Materials Engineering, Bohai University 2 , Jinzhou, Liaoning 121013, China

Abstract

The essence of fluid phase transition is the jump of physical properties distinctly induced by shock waves in the hard-sphere model. Due to the strong impact of the wave, the internal freedoms of molecules are stimulated, releasing tremendous energy that commonly triggers the phase transition. Conversely, typical thermal and dynamic jumps can be described by the Rankine–Hugoniot conditions based on the Euler equation. In the theoretical simulation, the initial density and rotational freedoms of molecules are directly regarded as the primary factors to affect processes of phase transition. However, the influence of vibrational freedom in molecules has not been discussed yet. As the increasing temperature can gradually excite the affection of vibrational freedom, it is unwise to assume that the temperature element is constant in the theory. What would be a suitable model that accurately reflects the relationship between temperature and affection from vibrational freedom? The non-limited model has been courageously attempted with the temperature range from T0 to 6T0 (T0 is unperturbed temperature). We have found that the vibrational freedom can have a great effect on properties during phase transition processes.

Funder

National Natural Science Foundation of China

Department of Education of Liaoning Province

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3