Controlling the spontaneous firing behavior of a neuron with astrocyte

Author:

Palabas Tugba1ORCID,Longtin Andre2,Ghosh Dibakar3ORCID,Uzuntarla Muhammet4ORCID

Affiliation:

1. Department of Biomedical Engineering, Zonguldak Bulent Ecevit University, 67100 Zonguldak, Turkey

2. Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada

3. Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108, India

4. Department of Bioengineering, Gebze Technical University, 41400 Kocaeli, Turkey

Abstract

Mounting evidence in recent years suggests that astrocytes, a sub-type of glial cells, not only serve metabolic and structural support for neurons and synapses but also play critical roles in the regulation of proper functioning of the nervous system. In this work, we investigate the effect of astrocytes on the spontaneous firing activity of a neuron through a combined model that includes a neuron–astrocyte pair. First, we show that an astrocyte may provide a kind of multistability in neuron dynamics by inducing different firing modes such as random and bursty spiking. Then, we identify the underlying mechanism of this behavior and search for the astrocytic factors that may have regulatory roles in different firing regimes. More specifically, we explore how an astrocyte can participate in the occurrence and control of spontaneous irregular spiking activity of a neuron in random spiking mode. Additionally, we systematically investigate the bursty firing regime dynamics of the neuron under the variation of biophysical facts related to the intracellular environment of the astrocyte. It is found that an astrocyte coupled to a neuron can provide a control mechanism for both spontaneous firing irregularity and burst firing statistics, i.e., burst regularity and size.

Funder

TUBITAK

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3