Dynamic coupling and spin-wave dispersions in a magnetic hybrid system made of an artificial spin-ice structure and an extended NiFe underlayer

Author:

Negrello R.1,Montoncello F.1ORCID,Kaffash M. T.2ORCID,Jungfleisch M. B.2ORCID,Gubbiotti G.3ORCID

Affiliation:

1. Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Ferrara, Italy

2. Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA

3. Istituto Officina dei Materiali del Consiglio Nazionale delle Ricerche (IOM-CNR), c/o Dipartimento di Fisica e Geologia, Perugia I 06123, Italy

Abstract

We present a combined experimental and numerical study of the spin-wave dispersion in a NiFe artificial spin-ice (ASI) system consisting of an array of stadium-shaped nanoislands deposited on the top of a continuous NiFe film with non-magnetic spacer layers of varying thickness. The spin-wave dispersion, measured by wavevector resolved Brillouin light scattering spectroscopy in the Damon–Eshbach configuration, consists of a rich number of modes, with either stationary or propagating character. We find that the lowest frequency mode displays a bandwidth of ∼0.5 GHz, which is independent of the presence of the film underneath. On the contrary, the Brillouin light scattering intensity of some of the detected modes strongly depends on the presence of the extended thin-film underlayer. Micromagnetic simulations unveil the details of the dynamic coupling between the ASI lattice and film underlayer. Interestingly, the ASI lattice facilitates dynamics of the film either specific wavelengths or intensity modulation peculiar to the modes of the ASI elements imprinted in the film. Our results demonstrate that propagating spin waves can be modulated at the nanometer length scale by harnessing the dynamic mode coupling in the vertical, i.e., the out-of-plane direction of suitably designed magnonic structures.

Funder

U.S. Department of Energy

Italian Ministry of University an Research

Horizon 2020 Framework Program

Publisher

AIP Publishing

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3