Quantifying the dynamical information content of pulsed, planar laser-induced fluorescence measurements

Author:

Knight Adam G.1ORCID,Olivares Carlota Sieira1,Roman Maksymilian J.1ORCID,Moon Daniel R.1ORCID,Lane Paul D.1ORCID,Costen Matthew L.1ORCID,McKendrick Kenneth G.1ORCID

Affiliation:

1. Institute of Chemical Sciences, Heriot-Watt University , Edinburgh EH14 4AS, United Kingdom

Abstract

We have analyzed the effects of the spreads in experimental parameters on the reliability of speeds and angular distributions extracted from a generic surface-scattering experiment based on planar laser-induced fluorescence detection. The numerical model assumes a pulsed beam of projectile molecules is directed at a surface. The spatial distribution of the scattered products is detected by imaging the laser-induced fluorescence excited by a thin, pulsed sheet of laser light. Monte Carlo sampling is used to select from realistic distributions of the experimental parameters. The key parameter is found to be the molecular-beam diameter, expressed as a ratio to the measurement distance from the point of impact. Measured angular distributions are negligibly distorted when this ratio is <∼10%. Measured most-probable speeds are more tolerant, being undistorted when it is <∼20%. In contrast, the spread of speeds or of corresponding arrival times in the incident molecular beam has only very minor systematic effects. The thickness of the laser sheet is also unimportant within realistic practical limits. These conclusions are broadly applicable to experiments of this general type. In addition, we have analyzed the specific set of parameters designed to match the experiments on OH scattering from a liquid perfluoropolyether (PFPE) surface in the Paper I [Roman et al., J. Chem. Phys. 158, 244704 (2023)]. This reveals that the detailed form of the molecular-beam profile is important, particularly on apparent angular distributions, for geometric reasons that we explain. Empirical factors have been derived to correct for these effects.

Funder

Engineering and Physical Sciences Research Council

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3