Mitigation of seismic waves using graded broadband metamaterial

Author:

Daradkeh Ashraf Mohammed1ORCID,Hojat Jalali Himan1ORCID,Seylabi Elnaz2ORCID

Affiliation:

1. Department of Civil Engineering, University of Texas at Arlington, 425 Nedderman Hall, 416 Yates St., Box 19308, Arlington, Texas 76019, USA

2. Department of Civil and Environmental Engineering, University of Nevada at Reno, 1664 N. Virginia St., Reno, Nevada 89557, USA

Abstract

In recent years, researchers have shown interest in blocking low-frequency vibrations with the aid of metamaterials due to their inherent wave-filtering properties. However, proposing a practical metamaterial layout remains a challenge, taking into consideration the size, shape, and availability of metamaterial components. This study proposes a new configuration that can increase the range of the attenuation frequency. The configuration focuses on the capability of graded metamaterials in filtering a wide range of wave frequencies that can be generated by low-amplitude waves. To find the best configuration with the widest bandgap, square periodic sections using different materials including steel, rubber, concrete, tungsten, and carbon fiber-reinforced polymer were considered. Unit cells with two layers of materials were examined numerically to determine the attenuation zones and the effect of material properties and core size on the bandgap width and frequency range. Furthermore, the performance of the unit cells in a soil medium under the low-amplitude low-frequency surface and bulk waves is evaluated in the frequency domain using finite element analysis, in which the metamaterial is embedded periodically in a soil medium with different configurations, including a graded distribution. The results show that having an array of unit cells spaced periodically can decrease the transmission of the wave to the protected zone located after the array, and the application of grading can increase the attenuation zones to filter frequencies as low as 4.5 Hz and up to 29 Hz.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3