A magnetic diagnostic suite for the Pegasus-III experiment

Author:

Reusch J. A.1ORCID,Aslin M. W.1ORCID,Bongard M. W.1ORCID,Diem S. J.1ORCID,Goetz J. A.1ORCID,Nornberg M. D.1ORCID,Rajendra A. S.1ORCID,Redd S.1ORCID,Rodriguez Sanchez C.1ORCID,Sassella R. K.1ORCID,Sontag A. C.1ORCID,Weberski J. D.1ORCID,Winz G. R.1ORCID

Affiliation:

1. Department of Nuclear Engineering and Engineering Physics, University of Wisconsin-Madison , Madison, Wisconsin 53706, USA

Abstract

Pegasus-III is an ultralow aspect ratio spherical tokamak providing a dedicated US experiment for comparative solenoid-free startup studies. A new magnetic diagnostic suite for equilibrium and low frequency (<200 kHz) magnetohydrodynamic mode analysis has been installed. These new diagnostics address the significant challenges of measuring magnetic field in a high noise environment with the majority constrained to fit in an 8 mm diagnostic gap on the high field side. Electrostatic switching noise generated by the 16 independent current feedback-controlled power supplies produces dVcm/dt ∼ 1 kV/μs and volt level common mode noise on the magnetics. Immunity to this switching noise is accomplished through differential signal runs and signal processing, along with end-to-end electromagnetic interference shielding. The magnetic measurements are simultaneously digitized at 1 MHz and conditioned by precision 8 pole Butterworth filters with a corner frequency of 200 kHz to prevent aliasing down to the 16-bit level over the full passband. Ex-vessel calibrations of the Bp coils were completed with a typical uncertainty of <0.5%. Stray toroidal field pickup from coil misalignment or positioning errors is corrected using a physics-based model. Comparisons of the corrected measurements to modeling agree to within 1.3% on average. This is within the 1.5% measurement uncertainty that a sensitivity analysis determined is needed for accurate fast boundary and equilibrium reconstruction.

Funder

U.S. Department of Energy

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3