On the dynamic behaviors of freely falling annular disks at different Reynolds numbers

Author:

Bi Dianfang12ORCID,Sun Tiezhi3ORCID,Wei Yingjie2ORCID,Huang Xudong1

Affiliation:

1. School of Aerospace Engineering, Tsinghua University, Beijing 100084, China

2. School of Astronautics, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China

3. School of Naval Architecture and Ocean Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China

Abstract

Freely falling or rising objects in quiescent Newtonian fluid have been frequently encountered in nature or industry, such as the spreading of seeds from a tree or the movement of ores in deep sea mining. The dynamic behaviors of freely moving objects can provide a significant understanding of the evolution of the body wake and the resulting path instability. In this study, we present numerical simulations of freely falling annular disks released from quiescent water for relatively low Reynolds numbers from 10 to 500 while keeping the non-dimensional moment of inertia [Formula: see text] and inner to outer diameter ratio η constant. The falling stage experiences a variation from quasi-one-dimensional mode, steady oblique motion (SO motion), to the fully three-dimensional mode, helical motion. The stage diagram is plotted to show the variation tendency with the increment of Reynolds numbers. The detailed characteristics of the trajectories and orientation of the annular disks for different motions are analyzed. The corresponding vortical structures are presented, and an analog of the wingtip vortex is found at the outer rim of the disk for transitional and helical motion. A steady recirculation region of SO motion is observed, which is similar to that of a stationary disk but with complex multilayer structures formed by the combined effects of both the inner and outer rims. The limit streamline and pressure coefficient are investigated, demonstrating that the asymmetrical pressure distribution that exerts fluid forces and torques on the disk plays a crucial role in the dynamic response of the disk. Furthermore, combining the flow fields and fluid forces, the physical mechanism responsible for the diverse falling patterns is explored in detail.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3