Nonlinear magnetoelectric effects in layered multiferroic composites

Author:

Fetisov Y. K.1ORCID,Srinivasan G.2ORCID

Affiliation:

1. MIREA—Russian Technological University 1 , Moscow 119454, Russia

2. Department of Physics, Oakland University 2 , Rochester, Michigan 48307, USA

Abstract

Magnetoelectric (ME) effects in a ferromagnetic and piezoelectric composite are the changes in the polarization caused by a magnetic field or the changes in the magnetization caused by an electric field. These effects are aided by the mechanical deformation in the ferroic phases caused by the combination of magnetostriction and piezoelectricity. Interest in ME effects is due to a variety of physical phenomena they exhibit, as well as their potential applications in the creation of highly sensitive magnetic field sensors and other electronic devices. Linear ME effects in structures with layers of different ferroic materials have been studied extensively. However, nonlinear ME effects, which are caused by the nonlinearity of the magnetic, dielectric, and acoustic properties of ferromagnets and piezoelectrics, are less well understood. The purpose of this review is to summarize the current state of knowledge on nonlinear ME (NLME) effects in composite heterostructures and to discuss their potential applications. The review begins by discussing the characteristics of materials that are conductive to the occurrence of NLME effects and ferromagnetic-piezoelectric materials that are most commonly used to study such effects. The review then provides details on theoretical approaches to the description of NLME effects in heterostructures and experimental methods for studying these effects. Finally, the review presents a chronological overview of the experimentally observed NLME effects in composite structures excited by low-frequency and pulsed magnetic or electric fields. The review concludes with a discussion on the potential applications of NLME effects for highly sensitive magnetic field sensors.

Funder

Russian Ministry of Science and Education

National Science Foundation

Air Force Office of Scientific Research

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Reference143 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3