Affiliation:
1. Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200072, People’s Republic of China
Abstract
A key parameter for the performance of ceramic topcoats in a thermal barrier coating is the porosity, which is sensitive to many growing conditions. In the present work, molecular dynamics simulations are performed to investigate the microscopic mechanism for the dependence of the porosity on several experimental conditions in the atmospheric plasma spraying deposition process, including temperature, substrate roughness, and the thickness-to-radius ratio of the yttrium-stabilized zirconia shell. These factors can significantly modify the porosity through changing the buckling mode of the yttrium-stabilized zirconia shell. Our findings provide some microscopic mechanisms for improving the deposition quality of the atmospheric plasma spraying thermal barrier coatings.
Funder
National Natural Science Foundation of China
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献