Microdroplet formation of water and alumina nanofluid in a T-junction microchannel

Author:

Governo A. F. L.1,Murshed S. M. S.1ORCID,Semião V.1ORCID

Affiliation:

1. IDMEC, Instituto Superior Técnico, Universidade de Lisboa , Av. Rovisco Pais, 1049-001 Lisboa, Portugal

Abstract

A scarcity of studies about nanofluids’ utilization in droplet formation inside microdevices currently hovers in the literature although potential applications of nanoparticles in a microfluidic environment are foreseen. For this purpose, experimentally assessing both nanofluid and microdroplet characteristics is fundamental. This work reports a series of experimental tests on the microdroplet formation of distilled water (DIW) and DIW-based aluminum oxide (Al2O3) nanofluid in a microfluidic T-junction. While water and nanofluid are used as the dispersed phase, mineral oil is used as the continuous phase. Microdroplet formation in the squeezing, transitional, and dripping regimes is characterized and scaling laws for the non-dimensional droplet volumes are presented. The effects of flow rate, capillary number, microchannel aspect ratio, and nanoparticle concentration are investigated. The addition of Al2O3 nanoparticles to the water is observed to have a major impact in the transitional regime (up to 40% increase), whereas in the dripping regime its influence is lower, with less than 10% difference. This was attributed to the nanofluid's enhanced interfacial tension and viscosity compared to the DIW, as well as possible adsorption at the surface.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3