Accurate prediction of global-density-dependent range-separation parameters based on machine learning

Author:

Villot Corentin1ORCID,Huang Tong1,Lao Ka Un1ORCID

Affiliation:

1. Department of Chemistry, Virginia Commonwealth University , Richmond, Virginia 23284, USA

Abstract

In this work, we develop an accurate and efficient XGBoost machine learning model for predicting the global-density-dependent range-separation parameter, ωGDD, for long-range corrected functional (LRC)-ωPBE. This ωGDDML model has been built using a wide range of systems (11 466 complexes, ten different elements, and up to 139 heavy atoms) with fingerprints for the local atomic environment and histograms of distances for the long-range atomic correlation for mapping the quantum mechanical range-separation values. The promising performance on the testing set with 7046 complexes shows a mean absolute error of 0.001 117 a0−1 and only five systems (0.07%) with an absolute error larger than 0.01 a0−1, which indicates the good transferability of our ωGDDML model. In addition, the only required input to obtain ωGDDML is the Cartesian coordinates without electronic structure calculations, thereby enabling rapid predictions. LRC-ωPBE(ωGDDML) is used to predict polarizabilities for a series of oligomers, where polarizabilities are sensitive to the asymptotic density decay and are crucial in a variety of applications, including the calculations of dispersion corrections and refractive index, and surpasses the performance of all other popular density functionals except for the non-tuned LRC-ωPBE. Finally, LRC-ωPBE (ωGDDML) combined with (extended) symmetry-adapted perturbation theory is used in calculating noncovalent interactions to further show that the traditional ab initio system-specific tuning procedure can be bypassed. The present study not only provides an accurate and efficient way to determine the range-separation parameter for LRC-ωPBE but also shows the synergistic benefits of fusing the power of physically inspired density functional LRC-ωPBE and the data-driven ωGDDML model.

Funder

Virginia Commonwealth University

National Energy Research Scientific Computing Center

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3