Dynamic damage characteristics of rock under multiple loads during high-voltage pulse fragmentation

Author:

Zhao Yong12ORCID,Liu Yi123ORCID,Xiong Liangli12,Huang Shijie12,Zhang He12ORCID,Wang Tianyu12,Liu Siwei4ORCID,Lin Fuchang123

Affiliation:

1. School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei Province, China

2. State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei Province, China

3. Key Laboratory of Pulsed Power Technology, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430074, Hubei Province, China

4. Institute of Fluid Science, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai 980-8577, Miyagi Prefecture, Japan

Abstract

To analyze the damage characteristics of rocks during high-voltage pulse fragmentation (HVPF), two kinds of loads, shockwave and cavity, are determined by optical observation, and the pressure–time characteristics of these two and their mechanism of damage to rocks in mesoscopic view are analyzed. A model of dynamic damage characteristics of brittle rock under multiple loads is established, which includes numerical calculation and discrete element simulation. In the discrete element simulation, the rock is simplified as a circular region without reflection boundary with a certain size of the circular hole inside, and the grains in the region are discretized as rigid spheres with a definite bonding relationship. The shockwave is considered the time-varying pressure loaded to the grains of the circular hole, and the cavity is considered the quasi-static pressure loaded to the grains on both sides of the fracture. The results of the model show that shear cracks and tensile cracks are produced during the shockwave action, but tensile cracks are predominant. The shockwave acts as a preload for the expansion of cracks, and the damage radius is small. Most of the cracks in HVPF are caused by the cavity. A comparison of the numerical calculation results with the discrete element simulation results shows that the model can describe the distribution characteristics of cracks under multiple loads, which lays a foundation for further analysis of the internal mechanism of HVPF.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3