Exploring cesium–tellurium phase space via high-throughput calculations beyond semi-local density-functional theory

Author:

Saßnick Holger-Dietrich1ORCID,Cocchi Caterina12ORCID

Affiliation:

1. Carl von Ossietzky Universität Oldenburg, Physics Department, D-26129 Oldenburg, Germany

2. Humboldt-Universität zu Berlin, Physics Department and IRIS Adlershof, D-12489 Berlin, Germany

Abstract

Boosted by the relentless increase in available computational resources, high-throughput calculations based on first-principles methods have become a powerful tool to screen a huge range of materials. The backbone of these studies is well-structured and reproducible workflows efficiently returning the desired properties given chemical compositions and atomic arrangements as sole input. Herein, we present a new workflow designed to compute the stability and the electronic properties of crystalline materials from density-functional theory using the strongly constrained and appropriately normed approximation (SCAN) for the exchange–correlation potential. We show the performance of the developed tool exploring the binary Cs–Te phase space that hosts cesium telluride, a semiconducting material widely used as a photocathode in particle accelerators. Starting from a pool of structures retrieved from open computational material databases, we analyze formation energies as a function of the relative Cs content and for a few selected crystals, we investigate the band structures and density of states unraveling interconnections among the structure, stoichiometry, stability, and electronic properties. Our study contributes to the ongoing research on alkali-based photocathodes and demonstrates that high-throughput calculations based on state-of-the-art first-principles methods can complement experiments in the search for optimal materials for next-generation electron sources.

Funder

Bundesministerium für Bildung und Forschung

Deutsche Forschungsgemeinschaft

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3