Connection between partial pressure, volatility, and the Soret effect elucidated using simulations of nonideal supercritical fluid mixtures

Author:

Fields Brandon1ORCID,Schelling Patrick K.123ORCID

Affiliation:

1. Department of Physics, University of Central Florida 1 , Orlando, Florida 32816-2385, USA

2. Advanced Materials Processing and Analysis Center, University of Central Florida 2 , Orlando, Florida 32816-2385, USA

3. Renewable Energy and Chemical Transformations (REACT) Cluster, University of Central Florida 3 , Orlando, Florida 32816-2385, USA

Abstract

Building on recent simulation work, it is demonstrated using molecular dynamics simulations of two-component fluid mixtures that the chemical contribution to the Soret effect in two-component nonideal fluid mixtures arises due to differences in how the partial pressures of the components respond to temperature and density gradients. Further insight is obtained by reviewing the connection between activity and deviations from Raoult’s law in the measurement of the vapor pressure of a liquid mixture. A new parameter γsS, defined in a manner similar to the activity coefficient, is used to characterize differences deviations from “ideal” behavior. It is then shown that the difference γ2S−γ1S is predictive of the sign of the Soret coefficient and is correlated to its magnitude. We hence connect the Soret effect to the relative volatility of the components of a fluid mixture, with the more volatile component enriched in the low-density, high-temperature region, and the less volatile component enriched in the high-density, low-temperature region. Because γsS is closely connected to the activity coefficient, this suggests the possibility that measurement of partial vapor pressures might be used to indirectly determine the Soret coefficient. It is proposed that the insight obtained here is quite general and should be applicable to a wide range of materials systems. An attempt is made to understand how these results might apply to other materials systems including interstitials in solids and multicomponent solids with interdiffusion occurring via a vacancy mechanism.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3