Ultrafast spin–orbit torque-induced magnetization switching in a 75°-canted magnetic tunnel junction

Author:

Nguyen T. V. A.12ORCID,Naganuma H.12ORCID,Honjo H.2ORCID,Ikeda S.12ORCID,Endoh T.1234

Affiliation:

1. Center for Science and Innovation in Spintronics (Core Research Cluster), Tohoku University 1 , Sendai, Japan

2. Center for Innovative Integrated Electronic Systems, Tohoku University 2 , Sendai, Japan

3. Graduate School of Engineering, Tohoku University 3 , Sendai, Japan

4. Research Institute of Electrical Communication, Tohoku University 4 , Sendai, Japan

Abstract

We investigate the switching dynamics of a 75°-canted Spin–orbit torque (SOT) device with an in-plane easy axis using the micro-magnetic simulation. The switching time (τ) is evaluated from the time evolution of the magnetization. The device with a strong out-of-plane magnetic anisotropy (μ0Hkeff = −0.08 T) shows τ = 0.19 ns while a device with a strong in-plane magnetic anisotropy (μ0Hkeff = −0.9 T) shows τ = 0.32 ns. The increase of the damping constant (α) results in the increase of τ for both devices and the sub-nanosecond switching could be retained as α < 0.14 in the device with μ0Hkeff = −0.08 T, while this was achieved as α < 0.04 in the device with μ0Hkeff = −0.9 T. Furthermore when the field-like coefficient (β) is increased, it leads to a decrease in τ, which can be reduced to 0.03 ns by increasing β to 1 in the device with μ0Hkeff = −0.08 T. In order to achieve the same result in the device with μ0Hkeff = −0.9 T, β must be increased to 6. These results indicate a way to achieve ultrafast field-free SOT switching of a few tens of picoseconds in nanometer-sized magnetic tunnel junction (MTJ) devices.

Funder

JSPS Core-to-Core

MEXT X-Nics

JSPS-Kakenhi

Tohoku University Center for Gender Equality Promotion

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3